Angle Formulas Reference Chart
To Find |
Known Parts |
Formula |
Alternate Formula |
A |
C & D |
C x SIN D = A |
|
A |
C & E |
C x COS E = A |
|
A |
B & D |
B x TAN D = A |
|
A |
B & E |
B x COT E = A |
|
A |
C & B |
√(C2 - B2) = A |
|
B |
C & D |
C x COS D = B |
|
B |
C & E |
C x SIN E = B |
|
B |
A & D |
A x COT D = B |
|
B |
A & E |
A x TAN E = B |
|
B |
C & A |
√(C2 - A2) = B |
|
C |
A & D |
A x COSEC D = C |
|
C |
A & E |
A x SEC E = C |
|
C |
B & E |
B x COSEC E = C |
|
C |
B & D |
B x SEC D = C |
|
C |
A & B |
√(A2 + B2) = C |
|
D |
A & C |
|
|
D |
B & C |
|
|
D |
A & B |
|
|
D |
E |
90° - E° = D° |
|
E |
B & C |
|
|
E |
A & C |
|
|
E |
A & B |
|
|
E |
D |
90° - D° = E° |
|
AREA |
A & B |
|
|
AREA |
A & D |
|
|
AREA |
B & D |
|
|
AREA |
C & D |
|
|
Oblique Triangles
To Find |
Known Parts |
Formula |
A |
B-D-E |
|
B |
A-D-E |
|
C |
A-F-E |
|
C |
B-F-D |
|
D |
E & F |
180° - (E° + F°) = D° |
D |
A-B-F |
B x SIN F A - (B x COS F) | = TAN D |
|
D |
A-B-C |
C2 + A2 - B2 2 x C x A | = COS D |
|
D |
A-B-E |
|
E |
D & F |
180° - (D° + F° = E° |
E |
A-B-F |
B x COSEC F A | - COT F = COT E |
|
E |
A-C-F |
|
E |
A-B-D |
|
F |
D & E |
180° - (D° + E°) = F° |
F |
C-D-B |
|
AREA |
A-B-F |
|
Formulas for Finding Functions of Angles
|
= SINE |
|
= COSINE |
Side opposite Side adjacent | |
|
= TANGENT |
Side adjacent Side opposite | |
|
= COTANGENT |
|
= SECANT |
|
= COSECANT |
|